Impact factor 0.175

Signa Vitae

A Journal In Intensive Care And Emergency Medicine

Tag: erythropoietin

Treatment with Erythropoietin in Neonatology

Abstract

The article presents the basics and control of erythropoiesis in the fetus and the newborn, the development of anaemia of prematurity and its treatment, with an emphasis on the use of human recombinant erythropoietin. The Intensive Care Unit of the Paediatric Clinic Maribor began treating anaemia of prematurity with erythropoietin in 2000. After introducing the treatment, the clinic found that the number of blood product transfusions and the needed blood volume decreased. In addition to erythropoietin, this was the result of stricter criteria for applying transfusion of concentrated erythrocytes.

Key words: preterm infant, anaemia of prematurity, erythropoietin, transfusion

Read More

NHE-1 Inhibitors and Erythropoietin for Maintaining Myocardial Function during Cardiopulmonary Resuscitation

Abstract

Efforts to successfully restore life in cardiac arrest victims are formidably challenging. They require not only that cardiac activity be initially reestablished but that injury to vital organs be prevented or minimized. In this article, we discuss the effects that cardiac arrest and resuscitation have on the myocardium, describing first the functional myocardial abnormalities that occur during cardiac resuscitation, which may limit the ability to reestablish cardiac activity. We then discuss strategies for minimizing myocardial injury and examine novel therapies aimed at minimizing ischemia and reperfusion injury. Finally, we discuss sodium-hydrogen exchanger isoform-1(NHE-1) inhibitors and erythropoietin for maintaining myocardial function during cardiopulmonary resuscitation.

Keywords: myocardial ischemic injury, reperfusion myocardial injury, cardiopulmonary resuscitation, NHE-1 inhibitors, erythropoietin

Read More

Protecting mitochondrial bioenergetic function

Abstract

Reversal of cardiac arrest requires reestablishment of aerobic metabolism by reperfusion with oxygenated blood of tissues that have been ischemic for variables periods of time. However, reperfusion concomitantly activates a myriad of pathogenic mechanisms causing what is known as “reperfusion injury.” At the center of reperfusion injury are mitochondria, playing a critical role as effectors and targets of injury. Mitochondrial injury compromises oxidative phosphorylation and the ability to regenerate Adenosine-5′-triphosphate (ATP); i.e., bioenergetic function. Thus targeting mitochondria to protect bioenergetic function may represent a novel concept in resuscitation with the potential for altering clinical practice. We have identified sodium-hydrogen exchanger isoform-1 (NHE)-1 inhibition and erythropoietin as attractive candidate drugs for this purpose and demonstrated corresponding functional and clinical benefits. Further work on the subject may pave the way for further scientific discover focused on greater understating of underlying cell mechanisms, identification of additional and perhaps more potent strategies, and develop means for effective drug delivery.


Keywords:
cardiac arrest, reperfusion injury, mitochondria, bioenergetic function, left ventricular myocardial distensibility, sodium-hydrogen exchanger isoform-1 (NHE-1) inhibitors, erythropoietin

Read More

Erythropoietin in post-resuscitation neurological recovery: is there light at the end of the tunnel?

Abstract

Studies show that erythropoietin, besides its critical role in hematopoiesis, provides neuroprotection in hypoxic-ischemic cerebral injury. Antiapoptotic, anti-inflammatory, angiogenetic, and neurotrophic properties of erythropoietin could increase indications, currently restricted to anemia in chronic renal failure and cancer, to hypoxic-ischemic cerebral insult.
In the adult and neonatal animal model of hypoxic-ischemic cerebral injury, erythropoietin significantly reduces infarct size with attenuation of brain damage, and preservation of cortical integrity. The first human study on the impact of erythropoietin in stroke victims showed that erythropoietin is safe and well tolerated at high doses, and associated with improved neurological outcome. Even with intravenous application, concentrations of erythropoietin in cerebrospinal fluid of these patients were many-fold higher than in non-treated patients.
In successfully resuscitated cardiac arrest victims overall neurological recovery remains poor despite improved cardiopulmonary resuscitation strategies. Post-resuscitation care needs further advances in order to improve final outcome. Through promotion of neuroangiogenesis, inhibition of hypoxia-induced apoptosis in neurons, and thus support of the survival of neurons in the ischemic brain, erythropoietin could be used to improve functional recovery of these patients. Nevertheless, optimal molecular forms of EPO, therapeutic doses, and treatment time window have to be determined in order to lower the incidence of adverse effects and still preserve neuroprotective properties.

Key words: cardiopulmonary resuscitation, erythropoietin, post-resuscitation period, hypoxia.

Read More

© 2015. Signa Vitae. Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license.