Levodopa-carbidopa-entacapone overdose presenting as altered mental status, xanthoderma, and yellowish sclera

SUN HWA LEE1, SEONG JONG YUN2, SEOKYONG RYU1, SEUNG WOON CHOI1, HYE JIN KIM1, TAE KYUNG KANG1, SUNG CHAN OH1, SUK JIN CHO1

1 Department of Emergency Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
2 Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea

Correspondence:
Seong Jong Yun
Department of Radiology
Kyung Hee University Hospital at Gangdong
Kyung Hee University School of Medicine
892 Dongnam-ro, Gangdong-gu
Seoul, 05278, Republic of Korea
Phone: +822 440-6933
Fax: +822 440-6932
E-mail: zoomknight@naver.com

ABSTRACT

Levodopa-carbidopa-entacapone is a single combination drug consisting of levodopa (aromatic amino acid), carbidopa (dopa-decarboxylase inhibitor), and entacapone (catechol-O-methyltransferase inhibitor). The Food and Drug Administration approved levodopa-carbidopa-entacapone in 2003, as treatment for idiopathic Parkinson’s disease in patients experiencing signs and symptoms of wearing-off. Although various adverse drug reactions of levodopa-carbidopa-entacapone have been recorded, there has been no reported case of levodopa-carbidopa-entacapone overdose. We report the first case of signs and symptoms of an overdose of levodopa-carbidopa-entacapone have been recorded, there has been no reported case of levodopa-carbidopa-entacapone overdose. We report the first case of a patient who ingested excess levodopa-carbidopa-entacapone in an attempt to commit suicide.

INTRODUCTION

Levodopa-carbidopa-entacapone is a triple combination drug containing levodopa, carbidopa, and entacapone. In 2003, this drug was approved by the Food and Drug Administration (FDA) and considered the main treatment option for Parkinson’s disease (PD). (1) Adverse drug reactions associated with the recommended dose of levodopa-carbidopa-entacapone have been reported to be at least 3% greater than placebo incidences, and these include dyskinesia, urine discoloration, diarrhea, nausea, hyperkinesia, vomiting and dry mouth. (2) Concerning the overdose of this drug, a few cases of levodopa alone or levodopa-carbidopa overdose have been reported. (3-6) However, there have been no reports on levodopa-carbidopa-entacapone overdose. We report the first case of a patient who ingested excess levodopa-carbidopa-entacapone in an attempt to commit suicide.

CASE PRESENTATION

A 77-year-old woman presented at our emergency department, with complaint from her son of altered mental status. She had a previous medical history of PD, for which she had received treatment for 4 years. In the morning, her son found her unconscious in the living room with 30 torn and remnants of the tablet. The last call was to her son 30 minutes before. Upon arrival, her vital signs were unstable (60/40 mmHg-110 beats/min-26 breaths/min-34°C) Physical examination showed the patient was in a state of stupor, with dilated pupils, sluggish light reflex, xanthoderma of the whole body (figure 1A) and yellowish sclera (figure 1B). Urine color is somewhat dark yellow to reddish (C).

Figure 1. Photograph images of the patients’ whole body (A), eye (B), and urine via Foley catheter (C). These show yellowish skin color (xanthoderma) (A) and yellowish sclera (B). Urine color is somewhat dark yellow to reddish (C).
She was admitted to the intensive care unit for further management. On hospital day (HD)-3, she was extubated and recovered a normal skin, sclera, and urine color. On HD-10, she was discharged to a rehabilitation center for supportive care and was free from any adverse events for a total follow-up period.

DISCUSSION

Levodopa-carbidopa-entacapone is a single combination tablet consisting of levodopa (aromatic amino acid), carbidopa (dopa-decarboxylase inhibitor), and entacapone (catechol-O-methyltransferase (COMT) inhibitor). (1) Until now, an overdose of levodopa alone (3) or that of levodopa-carbidopa (4-6) has been reported in animal studies and post-marketing surveillance. We hypothesized three potential etiological mechanisms related to skin color change. The first hypothesis was that hyperbilirubinemia, due to the hepatic impairment, may have resulted in jaundice and icteric sclera, and the subsequent yellowish discoloration of the skin and sclera. The second hypothesis was that the dyskinesia and urine discoloration. Among these, urine discoloration was observed in our patient. This discoloration is due to the water-soluble metabolite of the entacapone (glucuronide conjugates). (2,7) However, the cause of the change in skin color (xanthoderma) is unclear because it has not been reported as an adverse reaction of levodopa, carbidopa, and entacapone in animal studies and post-marketing surveillance. We hypothesized three potential etiological mechanisms related to skin color change. The first hypothesis was that hyperbilirubinemia, due to the hepatic impairment, may have resulted in jaundice and icteric sclera, and the subsequent yellowish discoloration of the skin and sclera. The second hypothesis was that the stimulation of melanin production due to levodopa may have resulted in the change of skin color. The third hypothesis was that high levels of the conjugated entacapone caused an accumulation of glucuronide conjugates in whole body tissues. Plasma entacapone

Table 1. Reported studies of the drug overdosage in Parkinson’s disease patients with levodopa therapy

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Age/Sex</th>
<th>Drug</th>
<th>No. of tables</th>
<th>Total drug dose</th>
<th>Symptoms</th>
<th>Abnormal laboratory finding at the time of the hospital visit</th>
<th>Interval between drug ingestion and hospital visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoehn, et al</td>
<td>1975</td>
<td>61/F</td>
<td>Levodopa alone</td>
<td>Not reported</td>
<td>Levodopa: 100 mg</td>
<td>Altered mentality, diaphoretic and restless, constant speech, jerky movements</td>
<td>Elevated serum CK, LDH, creatinine, glutamic oxaloacetic acid, glutaric pyruvic acid transaminase</td>
<td>Several hours</td>
</tr>
<tr>
<td>Sporer</td>
<td>1991</td>
<td>57/F</td>
<td>Levodopa-carbidopa</td>
<td>15</td>
<td>Levodopa: 1500 mg Carbidopa: 150 mg</td>
<td>Altered mentality, lethargy, choreiform movements</td>
<td>Elevated serum CK, LDH, hematuria, myoglobinuria</td>
<td>2 hours</td>
</tr>
<tr>
<td>Stuerenburg et al</td>
<td>1999</td>
<td>76/M</td>
<td>Levodopa-carbidopa</td>
<td>30</td>
<td>Levodopa: 6000 mg Carbidopa: 1500 mg</td>
<td>Altered mentality, anxious, depressed, agitated, subeuphoric, visual hallucinations</td>
<td>Not reported</td>
<td>About 1–2 hours</td>
</tr>
<tr>
<td>Delmas, et al</td>
<td>2008</td>
<td>55/M</td>
<td>Levodopa-carbidopa-entacapone</td>
<td>89</td>
<td>Levodopa: 17800 mg Carbidopa: 4450 mg</td>
<td>Psychomotor agitation, delirium, joviality, visual hallucinations, tachycardia, xerostomia</td>
<td>Elevated serum CK, aspartate aminotransferase</td>
<td>2.5 hours</td>
</tr>
<tr>
<td>Our case</td>
<td>2017</td>
<td>77/F</td>
<td>Levodopa-carbidopa-entacapone</td>
<td>30</td>
<td>Levodopa: 3000 mg Carbidopa: 750 mg Entacapone: 6000 mg</td>
<td>Altered mentality, xanadand None</td>
<td>30 minutes–1 hour</td>
<td></td>
</tr>
</tbody>
</table>

CK, creatinine kinase; LDH, lactate dehydrogenase.
level is dose-dependent; thus by ingesting an excess of the entacapone, the glucuronide conjugates of the entacapone in the hepatocyte and the small intestine might increase. Although 90% of the glucuronide conjugate in the small intestine is excreted via feces, 10% remains in circulation. (2,8) As seen in discolored urine, the color of the glucuronide conjugate is dark yellow to reddish. In our patient's case, the skin and sclera color were yellowish, and liver function test including bilirubin was normal; thus, the third hypothesis provided a more likely explanation.

The differential diagnosis between xanthoderma with yellowish sclera related to the levodopa-carbidopa-entacapone overdose and jaundice with icteric sclera related to the hepatic impairment was important because the optimal treatment could be different. In the treatment of levodopa-carbidopa-entacapone overdose, hemodialysis is unlikely to be beneficial due to the high protein binding of the COMT inhibitors. Patients are therefore started gradually on inotropic agents, since COMT inhibitors may interfere with the metabolism of agents such as dopamine and nor-epinephrine, thereby causing a prolonged response. (2)

Our case underscores the importance of the knowledge for new adverse reactions, related to levodopa-carbidopa-entacapone overdose. For optimal management, emergency physicians should keep in mind that an overdose of levodopa-carbidopa-entacapone in PD patients may be accompanied by altered mentality, xanthoderma and yellowish sclera.

REFERENCES

5. Stuerenburg HJ, Schoser BG. Acute overdosage and intoxication with carbidopa/levodopa can be detected in the subacute stage by measurement of 3-o-methyldopa. Neurol Neurosurg Psychiatry 1999;67:122-3.