Title
Author
DOI
Article Type
Special Issue
Volume
Issue
Myocardial effects of cardiac arrest and resuscitation with especial reference to mitochondrial injury
1,Rosalind Franklin University of Medicine and Science North Chicago VA Medical Center
*Corresponding Author(s): RAÚL J. GAZMURI E-mail: raul.gazmuri@rosalindfranklin.edu
The underlying mechanism of cell injury during ischemia and reperfusion is complex and timesesnsitive. Some processess develop coincidentally with the onset of ischemia and during reperfusion leading to abnormalities in energy metabolism, acid base status, and intracellular ion homeostasis. Other processes develop later and encompass activation of various signalling pathways that have deleterious or beneficial effects on specific effectors, but associated with sustained disruption of energy production contractile dysfunction and activation of apoptotic pathways. Discussion on the various cell mechanisms resposible for cell injury is beyond the scope of this review. However, pertinent to our discussion is the mounting evidence pointing to mitochondria as key target organelles of reperfusion injury.
cardiac arrest, mito-chondrial injury, cardiopulmonary resuscitation, apoptosis
RAÚL J. GAZMURI ,IYAD M. AYOUB,JEEJABAI RADHAKRISHNAN. Myocardial effects of cardiac arrest and resuscitation with especial reference to mitochondrial injury. Signa Vitae. 2008. 3(1);7-12.
1. Klocke FJ, Ellis AK. Control of coronary blood flow. Annu Rev Med 1980;31:489-508.
2. Hoffman JIE. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 1984;70:153-9.
3. Gazmuri RJ, Berkowitz M, Cajigas H. Myocardial effects of ventricular fibrillation in the isolated rat heart. Crit Care Med 1999;27:1542-50.
4. Kamohara T, Weil MH, Tang W, Sun S, Yamaguchi H, Klouche K, et al, editors. A comparison of myocardial function after primary cardiac and primary asphyxial cardiac arrest. Am J Respir Crit Care Med 2001;164:1221-4.
5. Neumar RW, Brown CG, Van Ligten P, Hoekstra J, Altschuld RA, Baker P. Estimation of myocardial ischemic injury during ventricular fibrillation with total circulatory arrest using high-energy phosphates and lactate as metabolic markers. Ann Emerg Med 1991;20:222-9.
6. Kern KB, Garewal HS, Sanders AB, Janas W, Nelson J, Sloan D, et al, editors. Depletion of myocardial adenosine triphosphate during prolonged untreated ventricular fibrillation: effect on defibrillation success. Resuscitation 1990;20:221-9.
7. Noc M, Weil MH, Gazmuri RJ, Sun S, Bisera J, Tang W. Ventricular fibrillation voltage as a monitor of the effectiveness of cardiopulmonary resuscitation. J Lab Clin Med 1994;124:421-6.
8. Kolarova JD, Radhakrishnan J, Sufen W, Gopalakrishnan P, Ayoub IM, Gazmuri RJ. Effects of cariporide on myocardial energy metabolism during resuscitation from VF. Circulation 2004;110:III-532.
9. Kette F, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Crit Care Med 1993;21:901-6.
10. Bing OH, Brooks WW, Messer JV. Heart muscle viability following hypoxia: Protective effect of acidosis. Science 1973;180:1297-8.
11. Bernard M, Menasche P, Canioni P, Fontanarava E, Grousset C, Piwnica A, et al, editors. Influence of the pH of cardioplegic solutions on intracellular pH, high-energy phosphates, and postarrest performance. Protective effects of acidotic, glutamate-containing cardioplegic perfusates. J Thorac Cardiovasc Surg 1985;90:235-42.
12. Gores GJ, Nieminen AL, Fleishman KE, Dawson TL, Herman B, Lemasters JJ. Extracellular acidosis delays onset of cell death in ATP-depleted hepatocytes. Am J Physiol 1988;255:C315-C322.
13. Duggal C, Weil MH, Gazmuri RJ, Tang W, Sun S, O‘Connell F, et al, editors. Regional blood flow during closed-chest cardiac resuscitation in rats. J Appl Physiol 1993;74:147-52.
14. Gazmuri RJ, Ayoub IM, Hoffner E, Kolarova JD. Successful ventricular defibrillation by the selective sodium-hydrogen exchanger isoform-1 inhibitor cariporide. Circulation 2001;104:234-9.
15. Klouche K, Weil MH, Sun S, Tang W, Povoas HP, Kamohara T, et al, editors. Evolution of the stone heart after prolonged cardiac arrest. Chest 2002;122:1006-11.
16. Ayoub IM, Kolarova JD, Yi Z, Trevedi A, Deshmukh H, Lubell DL, et al, editors. Sodium-hydrogen exchange inhibition during ventricular fibrillation: Beneficial effects on ischemic contracture, action potential duration, reperfusion arrhythmias, myocardial function, and resuscitability. Circulation 2003;107:1804-9.
17. Kolarova JD, Ayoub IM, Gazmuri RJ. Cariporide enables hemodynamically more effective chest compression by leftward shift of its flow-depth relationship. Am J Physiol Heart Circ Physiol 2005;288:H2904-H2911.
18. Takino M, Okada Y. Firm myocardium in cardiopulmonary resuscitation. Resuscitation 1996;33:101-6.
19. Lowe JE, Jennings RB, Reimer KA. Cardiac rigor mortis in dogs. J Mol Cell Cardiol 1979;11:1017-31.
20. Ayoub IM, Kolarova JD, Radhakrishnan J, Wang S, Gazmuri RJ. Zoniporide ameliorates post-resuscitation myocardial dysfunction by flow independent mechanisms. Crit Care Med 2004:32, A57.
21. Portman MA, Panos AL, Xiao Y, Anderson DL, Ning X. HOE-642 (cariporide) alters pH (i) and diastolic function after ischemia during reperfusion in pig hearts in situ. Am J Physiol Heart Circ Physiol 2001;280:H830-H834.
22. Valenzuela TD, Roe DJ, Nichol G, Clark LL, Spaite DW, Hardman RG. Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. N Engl J Med 2000;343:1206-9.
23. Niemann JT, Burian D, Garner D, Lewis RJ. Monophasic versus biphasic transthoracic countershock after prolonged ventricular fibrillation in a swine model. J Am Coll Cardiol 2000;36:932-8.
24. Kolarova J, Ayoub IM, Yi Z, Gazmuri RJ. Optimal timing for electrical defibrillation after prolonged untreated ventricular fibrillation. Crit Care Med 2003;31:2022-8.
25. Tang W, Weil MH, Sun S, Jorgenson D, Morgan C, Klouche K, et al, editors. The effects of biphasic waveform design on post-resuscitation myocardial function. J Am Coll Cardiol 2004;43:1228-35.
26. van Alem AP, Post J, Koster RW. VF recurrence: characteristics and patient outcome in out-of-hospital cardiac arrest. Resuscitation 2003;59:181-8.
27. Koretsune Y, Marban E. Cell calcium in the pathophysiology of ventricular fibrillation and in the pathogenesis of postarrhythmic contractile dysfunction. Circulation 1989;80:369-79.
28. Franz MR. Monophasic action potentials recorded by contact electrode method. Genesis, measurement, and interpretations. In: Franz MR, editor. Monophasic Action Potentials. Bridging Cell and Bedside.Armonk, New York: Futura Publishing Company, Inc.; 2000. p. 19-45.
29. Ayoub IM, Kolarova J, Kantola RL, Sanders R, Gazmuri RJ. Cariporide minimizes adverse myocardial effects of epinephrine during resus-citation from ventricular fibrillation. Crit Care Med 2005;33:2599-605.
30. Deantonio HJ, Kaul S, Lerman BB. Reversible myocardial depression in survivors of cardiac arrest. PACE 1990;13:982-5.
31. Gazmuri RJ, Weil MH, Bisera J, Tang W, Fukui M, McKee D. Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 1996;24:992-1000.
32. Kern KB, Hilwig RW, Rhee KH, Berg RA. Myocardial dysfunction after resuscitation from cardiac arrest: An example of global myocardial stunning. J Am Coll Cardiol 1996;28:232-40.
33. Kern KB. Postresuscitation myocardial dysfunction. Cardiol Clin 2002;20:89-101.
34. Mullner M, Domanovits H, Sterz F, Herkner H, Gamper G, Kurkciyan I, et al, editors. Measurement of myocardial contractility following successful resuscitation: quantitated left ventricular systolic function utilizing non-invasive wall stress analysis. Resuscitation 1998;39:51-9.
35. Laurent I, Monchi M, Chiche JD, Joly LM, Spaulding C, Bourgeois B, et al, editors. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 2002;40:2110-6.
36. Kern KB, Heidenreich JH, Higdon TA, Berg RA, Hilwig RW, Sanders AB, et al, editors. Effect of vasopressin on postresuscitation ventricular function: unknown consequences of the recent Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Crit Care Med 2004;32:S393-S397.
37. Gazmuri RJ. Effects of repetitive electrical shocks on postresuscitation myocardial function. Crit Care Med 2000;28:N228-N232.
38. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al, editors. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479-89.
39. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-12.
40. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999;341:233-49.
41. Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003;93:292-301.
42. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovasc Res 2004;61:372-85.
43. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, et al, editors. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 2004;113:1535-49.
44. Murphy E. Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res 2004;94:7-16.
45. Pan G, Humke EW, Dixit VM. Activation of caspases triggered by cytochrome c in vitro. FEBS Lett 1998;426:151-4.
46. Iwai T, Tanonaka K, Inoue R, Kasahara S, Kamo N, Takeo S. Mitochondrial damage during ischemia determines post-ischemic contractile dysfunction in perfused rat heart. J Mol Cell Cardiol 2002;34:725-38.
47. Vanden Hoek TL, Qin Y, Wojcik K, Li CQ, Shao ZH, Anderson T, et al, editors. Reperfusion, not simulated ischemia, initiates intrinsic apop-tosis injury in chick cardiomyocytes. Am J Physiol 2003;284:H141-H150.
48. Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R. Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 2001;89:153-9.
49. Ingwall JS. Transgenesis and cardiac energetics: new insights into cardiac metabolism. J Mol Cell Cardiol 2004;37:613-23.
50. Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 1985;54:831-62.
51. Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 2006;571:253-73.
52. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999;68:383-424.
53. Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274:11549-56.
54. Narula J, Arbustini E, Chandrashekhar Y, Schwaiger M. Apoptosis and the systolic dysfunction in congestive heart failure. Story of apoptosis interruptus and zombie myocytes. Cardiol Clin 2001;19:113-26.
55. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ. Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci U S A 2002;99:6252-6.
56. Schlesinger PH, Gross A, Yin XM, Yamamoto K, Saito M, Waksman G, Korsmeyer SJ. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci U S A 1997;94:11357-62.
57. Niquet J, Wasterlain CG. Bim, Bad, and Bax: a deadly combination in epileptic seizures. J Clin Invest 2004;113:960-2.
58. Radhakrishnan J, Wang S, Ayoub IM, Kolarova JD, Levine RF, Gazmuri RJ. Circulating levels of cytochrome c after resuscitation from cardiac arrest: a marker of mitochondrial injury and predictor of survival. Am J Physiol Heart Circ Physiol 2007;292:H767-H775.
59. Adachi N, Hirota M, Hamaguchi M, Okamoto K, Watanabe K, Endo F. Serum cytochrome c level as a prognostic indicator in patients with systemic inflammatory response syndrome. Clin Chim Acta 2004;342:127-36.
60. Hosoya M, Nunoi H, Aoyama M, Kawasaki Y, Suzuki H. Cytochrome c and tumor necrosis factor-alpha values in serum and cerebrospinal fluid of patients with influenza-associated encephalopathy. Pediatr Infect Dis J 2005;24:467-70.
61. Sakaida I, Kimura T, Yamasaki T, Fukumoto Y, Watanabe K, Aoyama M, et al, editors. Cytochrome c is a possible new marker for fulminant hepatitis in humans. J Gastroenterol 2005;40:179-85.
62. Jesus Garcia-Rivas G, Guerrero-Hernandez A, Guerrero-Serna G, Rodriguez-Zavala JS, Zazueta C. Inhibition of the mitochondrial calcium uniporter by the oxo-bridged dinuclear ruthenium amine complex (Ru360) prevents from irreversible injury in postischemic rat heart. FEBS J 2005;272:3477-88.
63. Soriano ME, Nicolosi L, Bernardi P. Desensitization of the permeability transition pore by cyclosporin a prevents activation of the mitochondrial apoptotic pathway and liver damage by tumor necrosis factor-alpha. J Biol Chem 2004;279:36803-8.
64. Shanmuganathan S, Hausenloy DJ, Duchen MR, Yellon DM. Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. Am J Physiol Heart Circ Physiol 2005;289:H237-H242.
65. Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters JJ. Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol 2002;62:22-9.
66. Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D, et al, editors. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol 2005;38:367-74.
Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,200 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.
Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.
Chemical Abstracts Service Source Index The CAS Source Index (CASSI) Search Tool is an online resource that can quickly identify or confirm journal titles and abbreviations for publications indexed by CAS since 1907, including serial and non-serial scientific and technical publications.
Index Copernicus The Index Copernicus International (ICI) Journals database’s is an international indexation database of scientific journals. It covered international scientific journals which divided into general information, contents of individual issues, detailed bibliography (references) sections for every publication, as well as full texts of publications in the form of attached files (optional). For now, there are more than 58,000 scientific journals registered at ICI.
Geneva Foundation for Medical Education and Research The Geneva Foundation for Medical Education and Research (GFMER) is a non-profit organization established in 2002 and it works in close collaboration with the World Health Organization (WHO). The overall objectives of the Foundation are to promote and develop health education and research programs.
Scopus: CiteScore 1.3 (2023) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.
Embase Embase (often styled EMBASE for Excerpta Medica dataBASE), produced by Elsevier, is a biomedical and pharmacological database of published literature designed to support information managers and pharmacovigilance in complying with the regulatory requirements of a licensed drug.
Top