Article Data

  • Views 1454
  • Dowloads 148

Original Research

Open Access

Pediatric surgical extracorporeal membrane oxygenation -a case series


1Department of Anesthesiology College of Medicine, Mayo Clinic

2Department of Health Sciences, Mayo Clinic

DOI: 10.22514/SV32.102008.6 Vol.3,Issue 2,October 2008 pp.18-23

Published: 01 October 2008

*Corresponding Author(s): JURAJ SPRUNG E-mail:


Objective. To review demographic and procedural factors and their association with weaning rate and survival from extracorporeal membrane oxygenation (ECMO) in pediatric patients undergoing repair of cardiac malformations. Methods. The hospital records of children requiring ECMO during cardiac operation due to failure to wean from cardio-pulmonary by pass (CPB) were retrospectively reviewed, and an analysis of variables affecting survival was performed. Results. Thirty-five pediatric patients between January 1, 2000 and December 31, 2006 required ECMO for cardiopulmonary support during cardiac operations. ECMO survival was 54.3% and was comparable across all age groups. The lowest pH during ECMO treatment was the only predictor of mortality (P = 0.006). No other patient, surgical or anesthetic, factor was associated with either weaning from ECMO or hospital survival.  

Conclusions. No clear risk factor could be identified for survival from ECMO in our pediatric patients who underwent cardiac surgery and failed weaning from cardiopulmonary bypass. 


congenital, cardiopul-monary bypass, infants, neonates, failure to wean for cardiopulmonary bypass, survival

Cite and Share

RANDALL P. FLICK',STEPHEN J. GLEICH,ANDREW C. HANSON,DARRELL R. SCHROEDER ,JURAJ SPRUNG. Pediatric surgical extracorporeal membrane oxygenation -a case series. Signa Vitae. 2008. 3(2);18-23.


1. Krian A, Kramer HH, Quaegebeur J, Ostermeyer J, Korbmacher B, Godehardt E, et al. The arterial switch-operation: early and midterm (6 years) results with particular reference to technical problems. Thorac Cardiovasc Surg 1991;39 Suppl 2:160-5.

2. Dalton HJ, Siewers RD, Fuhrman BP, Del Nido P, Thompson AE, Shaver MG, et al. Extracorporeal membrane oxygenation for cardiac rescue in children with severe myocardial dysfunction. Crit Care Med 1993;21:1020-8.

3. Langley SM, Sheppard SV, Tsang VT, Monro JL, Lamb RK. When is extracorporeal life support worthwhile following repair of congenital heart disease in children? Eur J Cardiothorac Surg 1998;13:520-5.

4. Walters HL, Hakimi M, Rice MD, Lyons JM, Whittlesey GC, Klein MD. Pediatric cardiac surgical ECMO: multivariate analysis of risk factors for hospital death. Ann Thorac Surg 1995;60:329-36.

5. Ziomek S, Harrell JE, Jr., Fasules JW, Faulkner SC, Chipman CW, Moss M, et al. Extracorporeal membrane oxygenation for cardiac failure after congenital heart operation. Ann Thorac Surg 1992;54:861-7.

6. Flick RP, Sprung J, Gleich SJ, Barnes RD, Warner DO, Dearani JA, et al. Intraoperative extracorporeal membrane oxygenation and survival of pediatric patients undergoing repair of congenital heart disease. Ped Anesth 2008;18:757-66.

7. Anderson RH, Cook AC. Morphology of the functionally univentricular heart. Cardiol Young 2004;14 Suppl 1:3-12.

8. Krishnan U. Univentricular heart: management options. Indian J Pediatr 2005;72:519-24.

9. Aharon AS, Drinkwater DC, Jr., Churchwell KB, Quisling SV, Reddy VS, Taylor M, et al. Extracorporeal membrane oxygenation in children after repair of congenital cardiac lesions. Ann Thorac Surg 2001;72:2095-101.

10. Raithel SC, Pennington DG, Boegner E, Fiore A, Weber TR. Extracorporeal membrane oxygenation in children after cardiac surgery. Cir-culation 1992;86:II305-10.

11. Morris MC, Ittenbach RF, Godinez RI, Portnoy JD, Tabbutt S, Hanna BD, et al. Risk factors for mortality in 137 pediatric cardiac intensive care unit patients managed with extracorporeal membrane oxygenation. Crit Care Med 2004;32:1061-9.

12. Montgomery VL, Strotman JM, Ross MP. Impact of multiple organ system dysfunction and nosocomial infections on survival of children treated with extracorporeal membrane oxygenation after heart surgery. Crit Care Med 2000;28:526-31.

13. Kolovos NS, Bratton SL, Moler FW, Bove EL, Ohye RG, Bartlett RH, et al. Outcome of pediatric patients treated with extracorporeal life support after cardiac surgery. Ann Thorac Surg 2003;76:1435-41.

14. Black MD, Coles JG, Williams WG, Rebeyka IM, Trusler GA, Bohn D, et al. Determinants of success in pediatric cardiac patients undergoing extracorporeal membrane oxygenation. Ann Thorac Surg 1995;60:133-8.

15. Kulik TJ, Moler FW, Palmisano JM, Custer JR, Mosca RS, Bove EL, et al. Outcome-associated factors in pediatric patients treated with extracorporeal membrane oxygenator after cardiac surgery. Circulation 1996;94:II63-8.

16. Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 2002;123:110-8.

Abstracted / indexed in

Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,200 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.

Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.

Chemical Abstracts Service Source Index The CAS Source Index (CASSI) Search Tool is an online resource that can quickly identify or confirm journal titles and abbreviations for publications indexed by CAS since 1907, including serial and non-serial scientific and technical publications.

Index Copernicus The Index Copernicus International (ICI) Journals database’s is an international indexation database of scientific journals. It covered international scientific journals which divided into general information, contents of individual issues, detailed bibliography (references) sections for every publication, as well as full texts of publications in the form of attached files (optional). For now, there are more than 58,000 scientific journals registered at ICI.

Geneva Foundation for Medical Education and Research The Geneva Foundation for Medical Education and Research (GFMER) is a non-profit organization established in 2002 and it works in close collaboration with the World Health Organization (WHO). The overall objectives of the Foundation are to promote and develop health education and research programs.

Scopus: CiteScore 1.0 (2022) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.

Embase Embase (often styled EMBASE for Excerpta Medica dataBASE), produced by Elsevier, is a biomedical and pharmacological database of published literature designed to support information managers and pharmacovigilance in complying with the regulatory requirements of a licensed drug.

Submission Turnaround Time