Title
Author
DOI
Article Type
Special Issue
Volume
Issue
NHE-1 Inhibitors and Erythropoietin for Maintaining Myocardial Function during Cardiopulmonary Resuscitation
1Rosalind Franklin Univ Med & Sci, N Chicago VA Med Ctr
*Corresponding Author(s): RAUL J. GAZMURI E-mail: raul.gazmuri@rosalindfranklin.edu
Efforts to successfully restore life in cardiac arrest victims are formidably challenging. They require not only that cardiac activity be initially reestablished but that injury to vital organs be prevented or minimized. In this article, we discuss the effects that cardiac arrest and resuscitation have on the myocardium, describing first the functional myocardial abnormalities that occur during cardiac resuscitation, which may limit the ability to reestablish cardiac activity. We then discuss strategies for minimizing myocardial injury and examine novel therapies aimed at minimizing ischemia and reperfusion injury. Finally, we discuss sodium-hydrogen exchanger isoform-1(NHE-1) inhibitors and erythropoietin for maintaining myocardial function during cardiopulmonary resuscitation.
myocardial ischemic injury, reperfusion myocardial injury, cardiopulmonary resuscitation, NHE-1 inhibitors, erythropoietin
RAUL J. GAZMURI,IYAD M. AYOUB,JEEJABAI RADHAKRISHNAN. NHE-1 Inhibitors and Erythropoietin for Maintaining Myocardial Function during Cardiopulmonary Resuscitation. Signa Vitae. 2010. 5(2);6-13.
1. Binak K, Harmanci N, Sirmaci N, Ataman N, Ogan H. Oxygen extraction rate of the myocardium at rest and on exercise in various conditions. Br Heart J 1967;29:422-7.
2. Yusa T, Obara S. Myocardial oxygen extraction rate under general anesthesia. Tohoku J Exp Med 1981;133:321-4.
3. Hoffman JIE. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 1984;70:153-9.
4. Duggal C, Weil MH, Gazmuri RJ,Tang W, Sun S, O'Conell F, et al. Regional blood flow during closed-chest cardiac resuscitation in rats. J Appl Physiol 1993;74:147-52.
5. Ditchey RV, Goto Y, Lindenfeld J. Myocardial oxygen requirements during experimental cardiopulmonary resuscitation. Cardiovasc Res 1992;26:791-7.
6. Gazmuri RJ, Berkowitz M, Cajigas H. Myocardial effects of ventricular fibrillation in the isolated rat heart. Crit Care Med 1999;27:1542-50.
7. Dong Z, Saikumar P, Weinberg JMl. Calcium in cell injury and death. Ann Rev Pathol 2006;1:405-34.
8. Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 2006;34(Pt 2):232-7.
9. Weisfeldt ML, Zweier J, Ambrosio G,Becker LC, Flaherty JT. Evidence that free radicals result in reperfusion injury in heart muscle. Basic Life Sci 1988;49:911-9.
10. Ayoub IM, Kolarova J, Kantola R, Radhakrishnan J, Wang S, Gazmuri RJ. Zoniporide preserves left ventricular compliance during ventricular fibrillation and minimizes post-resuscitation myocardial dysfunction through benefits on energy metabolism. Crit Care Med 2007;35:2329-36.
11. Klouche K, Weil MH, Sun S, Tang W, Povoas HP, Kamohara T, et al. Evolution of the stone heart after prolonged cardiac arrest. Chest 2002;122:1006-11.
12. Ayoub IM, Kolarova JD, Sehgal MA, Deshmukh H, Lubell DL, Franz MR, et al. Sodium-hydrogen exchange inhibition minimizes adverse effects of epinephrine during cardiac resuscitation. Circulation 2003;108:IV-420.
13. Cooley DA, Reul GJ, Wukasch DC. Ischemic contracture of the heart: "Stone Heart". Am J Cardiol 1972;29:575-7.
14. Katz AM, Tada M. The "Stone Heart": A challenge to the biochemist. Am J Cardiol 1972;29:578-80.
15. Sorrell VL, Altbach MI, Kern KB, Squire S, Hilwig RW, Hayes MM, et al. Images in cardiovascular medicine. Continuous cardiac magnetic resonance imaging during untreated ventricular fibrillation. Circulation 2005;111:e294.
16. Koretsune Y, Marban E. Mechanism of ischemic contracture in ferret hearts: relative roles of [Ca2+]i elevation and ATP depletion. Am J Physiol 1990;258:H9-H16.
17. Ayoub IM, Kolarova JD, Yi Z, Deshmukh H, Lubell DL, Franz MR, et al. Sodium-hydrogen exchange inhibition during ventricular fibrillation: Beneficial effects on ischemic contracture, action potential duration, reperfusion arrhythmias, myocardial function, and resuscitability. Circulation 2003;107:1804-9.
18. Gazmuri RJ. Effects of repetitive electrical shocks on postresuscitation myocardial function. Crit Care Med 2000;28:N228-N232.
19. Gazmuri RJ, Deshmukh S, Shah PR. Myocardial effects of repeated electrical defibrillations in the isolated fibrillating rat heart. Crit Care Med 2000;28:2690-6.
20. Deshmukh HG, Weil MH, Gudipati CV, Trevino RP, Bisera J, Rackow EC. Mechanism of blood flow generated by precordial compression during CPR. I. Studies on closed chest precordial compression. Chest 1989;95:1092-9.
21. Kühn C, Juchems R, Frese W. Evidence for the 'cardiac pump theory' in cardiopulmonary resuscitation in man by transesophageal echo-cardiography. Resuscitation 1991;22:275-82.
22. Redberg RF, Tucker KJ, Cohen TJ, et al. Physiology of blood flow during cardiopulmonary resuscitation. A transesophageal echocardio-graphic study. Circulation 1993;88:534-42.
23. Kolarova JD, Ayoub IM, Gazmuri RJ. Cariporide enables hemodynamically more effective chest compression by leftward shift of its flow-depth relationship. Am J Physiol Heart Circ Physio. 2005;288:H2904-H2911.
24. Takino M, Okada Y. Firm myocardium in cardiopulmonary resuscitation. Resuscitation 1996;33:101-6.
25. Sanders AB, Atlas M, Ewy GA, Kern KB, Bragg S. Expired PCO2 as an index of coronary perfusion pressure. Am J Emerg Med 1985;3:147-9.
26. Gudipati CV, Weil MH, Bisera J, Deshmuckh HG, Rackow EC. Expired carbon dioxide: A noninvasive monitor of cardiopulmonary resus-citation. Circulation 1988;77:234-9.
27. Rubertsson S, Karlsten R. Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation. Resuscitation 2005;65:357-63.
28. Ayoub IM, Kolarova J, Kantola RL,Sanders R,Gazmuri RJ. Cariporide minimizes adverse myocardial effects of epinephrine during resus-citation from ventricular fibrillation. Crit Care Med 2005;33:2599-605.
29. Valenzuela TD, Roe DJ, Nichol G,Clark LL, Spaite DW, Hardman RG. Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. N Engl J Med 2000;343:1206-9.
30. van Alem AP, Post J, Koster RW. VF recurrence: characteristics and patient outcome in out-of-hospital cardiac arrest. Resuscitation 2003;59:181-8.
31. Gazmuri RJ, Weil MH, Bisera J, Tang w, Fukui M, McKee D. Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 1996;24:992-1000.
32. Kern KB, Hilwig RW, Rhee KH, Berg RA. Myocardial dysfunction after resuscitation from cardiac arrest: An example of global myocardial stunning. J Am Coll Cardiol 1996;28:232-40.
33. Laurent I, Monchi M, Chiche JD, Joly LM, Spaulding C, Bourgeois B, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 2002;40:2110-6.
34. Ruiz-Bailen M, Aguayo DH, Ruiz-Navarro S, Diaz-Castellanos MA, Rucabado-Aguilar L, Escudero GG, at al. Reversible myocardial dysfun-ction after cardiopulmonary resuscitation. Resuscitation 2005;66:175-81.
35. Xu T, Tang W, Ristagno G, Wang H, Sun S, weil MH. Postresuscitation myocardial diastolic dysfunction following prolonged ventricular fibrillation and cardiopulmonary resuscitation. Crit Care Med 2008;36:188-92.
36. Hilwig RW, Berg RA, Kern KB, Ewy GA. Endothelin-1 vasoconstriction during swine cardiopulmonary resuscitation improves coronary perfusion pressures but worsens postresuscitation outcome. Circulation 2000;101:2097-102.
37. Gazmuri RJ, Hoffner E, Kalcheim J, Ho H, Patel M, Ayoub IM, et al. Myocardial protection during ventricular fibrillation by reduction of proton-driven sarcolemmal sodium influx. J Lab Clin Med 2001;137:43-55.
38. Gazmuri RJ, Ayoub IM, Hoffner E, Kolarvo JD. Successful ventricular defibrillation by the selective sodium-hydrogen exchanger isoform-1 inhibitor cariporide. Circulation. 2001;104:234-9.
39. Gazmuri RJ, Ayoub IM, Kolarova JD, Karmazyn M. Myocardial protection during ventricular fibrillation by inhibition of the sodium-hydrogen exchanger isoform-1. Crit Care Med 2002;30:S166-S171.
40. Kolarova J, Yi Z, Ayoub IM, Gazmuri RJ. Cariporide potentiates the effects of epinephrine and vasopressin by nonvascular mechanisms during closed-chest resuscitation. Chest 2005;127:1327-34.
41. Wang S, Radhakrishnan J, Ayoub IM, Kolarova JD, Taglieri DM, Gazmuri RJ. Limiting sarcolemmal Na+ entry during resuscitation from VF prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury. J Appl Physiol 2007;103:55-65.
42. Singh D, Kolarova JD, Wang S, Ayoub IM, Gazmuri RJ. Myocardial protection by erythropoietin during resuscitation from ventricular fibri-llation. Am J Ther 2007;14:361-8.
43. Grmec S, Strnad M, Kupnik D, Sinkovic A, Gazmuri RJ. Erythropoietin facilitates the return of spontaneous circulation and survival in victims of out-of-hospital cardiac arrest. Resuscitation 2009;80:631-7.
44. von Planta M, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Myocardial acidosis associated with CO2 production during cardiac arrest and resuscitation. Circulation 1989;80:684-92.
45. Kette F, Weil MH, Gazmuri RJ, Bisera J, Rackow EC. Intramyocardial hypercarbic acidosis during cardiac arrest and resuscitation. Crit Care Med 1993;21:901-6.
46. Noc M, Weil MH, Gazmuri RJ, Sun S, Bisera J, Tang W Ventricular fibrillation voltage as a monitor of the effectiveness of cardiopulmonary resuscitation. J Lab Clin Med 1994;124:421-6.
47. Karmazyn M, Sawyer M, Fliegel L. The na(+)/h(+) exchanger: a target for cardiac therapeutic intervention. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5:323-35.
48. Imahashi K, Kusuoka H, Hashimoto K, Yoshioka J, Yamaguchi H, Nishimura T. Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res 1999;84:1401-6.
49. Avkiran M, Ibuki C, Shimada Y, Haddock PS. Effects of acidic reperfusion on arrhythmias and Na(+)-K(+)-ATPase activity in regionally ischemic rat hearts. Am J Physiol 1996;270(3 Pt 2):H957-H964.
50. An J, Varadarajan SG, Camara A, Chen Q,Chen Q,Novalija E, Gross GJ, et al. Blocking Na(+)/H(+) exchange reduces [Na(+)](i) and [Ca(2+)](i) load after ischemia and improves function in intact hearts. Am J Physiol 2001;281:H2398-H2409.
51. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 2000;28:285-96.
52. Yamamoto S, Matsui K, Ohashi N. Protective effect of Na+ /H+ exchange inhibitor, SM-20550, on impaired mitochondrial respiratory function and mitochondrial Ca2+ overload in ischemic/reperfused rat hearts. J Cardiovasc Pharmacol 2002;39:569-75.
53. Borutaite V, Brown GC. Mitochondria in apoptosis of ischemic heart. FEBS Lett 2003;541:1-5.
54. Nasser FN, Walls JT, Edwards WD, Harrison CE. Lidocaine-induced reduction in size of experimental myocardial infarction. Am J Cardiol. 1980;46:967-75.
55. Hinokiyama K, Hatori N, Ochi M, Maehara T, Tanaka S. Myocardial protective effect of lidocaine during experimental off-pump coronary artery bypass grafting. Ann Thorac Cardiovasc Surg 2003;9:36-42.
56. Gazmuri RJ, Ayoub IM. Myocardial Effects of Sodium-Hydrogen Exchange Inhibition during Resuscitation from Ventricular Fibrillation. In: Dhallas NS, Takeda N, Singh M, Lukas A, editors. Myocardial Ischemia and Preconditioning.Boston: Kluwer Academic Publishers; 2003.
p. 375-88.
57. Gazmuri RJ, Ayoub IM, Kolarova J. Myocardial protection during resuscitation from cardiac arrest. Curr Opin Crit Care 2003;9:199-204.
58. Gazmuri RJ, Ayoub IM. The case for sodium-hydrogen exchanger isoform-1 inhibition during cardiac resuscitation remains strong. Crit Care Med 2006;34:1580-2.
59. Ayoub IM, Radhakrishnan J, Gazmuri RJ. Targeting mitochondria for resuscitation from cardiac arrest. Crit Care Med 2008;36:S440-46.
60. Radhakrishnan J, Ayoub IM, Gazmuri RJ. Activation of caspase-3 may not contribute to postresuscitation myocardial dysfunction. Am J Physiol Heart Circ Physiol 2009;296:H1164-74.
61. Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 2003;108:79-85.
62. Parsa CJ, Matsumoto A, Kim J, Riel Ru, Pascal LS, Walton GB, et al. A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 2003;112:999-1007.
63. Tramontano AF, Muniyappa R, Black AD, Blendea MC, Cohen I, Denga L, et al. Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochem Biophys Res Commun 2003;308:990-4.
64. Parsa CJ, Kim J, Riel RU, Pascal LS, Thompson RB, Petrofski JA, et al. Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem 2004;279:20655-62.
65. Wright GL, Hanlon P, Amin K, Steenbergen C, Murphy E, Arcasoy MO. Erythropoietin receptor expression in adult rat cardiomyocytes is asso-ciated with an acute cardioprotective effect for recombinant erythropoietin during ischemia-reperfusion injury. FASEB J 2004;18:1031-3.
66. Namiuchi S, Kagaya Y, Ohta J, Shiba N, Sugi M, OIkawa M, et al. High serum erythropoietin level is associated with smaller infarct size in patients with acute myocardial infarction who undergo successful primary percutaneous coronary intervention. J Am Coll Cardiol 2005;45:1406-12.
67. Brines ML, Ghezzi P, Keenan S, Angello D, de Lanerolle NC, Cerami C, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 2000;97:10526-31.
68. Ghezzi P, Brines M. Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ 2004;11:S37-S44.
69. Celik M, Gokmen N, Erbayraktar S, Akhisarogolu M, Konakc S, Ulukus C, et al. Erythropoietin prevents motor neuron apoptosis and neu-rologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A 2002;99:2258-63.
70. Junk AK, Mammis A, Savitz SI, Singh M, Roth S, Malhotra S,et al. Erythropoietin administration protects retinal neurons from acute ische-mia-reperfusion injury. Proc Natl Acad Sci U S A 2002;99:10659-64.
71. Vesey DA, Cheung C, Pat B, Endre Z, Gobe G, Johnson DW. Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant 2004;19:348-55.
72. Abdelrahman M, Sharples EJ, McDonald MC, Coln M, Patel NS, Yaqoob MM, et al. Erythropoietin attenuates the tissue injury associated with hemorrhagic shock and myocardial ischemia. Shock 2004;22:63-9.
73. Buemi M, Vaccaro M, Sturiale A, Galeano MR, Sansotta C, Cavallari V,et al. Recombinant human erythropoietin influences revascularization and healing in a rat model of random ischaemic flaps. Acta Derm Venereol 2002;82:411-7.
74. Rui T, Feng Q, Lei M, Peng T, Zhang J, Xu M, et al. Erythropoietin prevents the acute myocardial inflammatory response induced by ische-mia/reperfusion via induction of AP-1. Cardiovasc Res 2005;65:719-27.
75. Li Y, Takemura G, Okada H, Miyata S, Maruyama R, Li L, et al. Reduction of inflammatory cytokine expression and oxidative damage by erythropoietin in chronic heart failure. Cardiovasc Res 2006;71:684-94.
76. van der Meer P, Lipsic E, Henning RH, Boddeus K, van der Velden J, Voors AA, et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J Am Coll Cardiol 2005;46:125-33.
77. Hirata A, Minamino T, Asanuma H, Fujita M, Wakeno M, Myoishi M, et al. Erythropoietin enhances neovascularization of ischemic myocar-dium and improves left ventricular dysfunction after myocardial infarction in dogs. J Am Coll Cardiol 2006;48:176-84.
78. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovi A, Terzic A. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochon-drial function. Am J Physiol 1998;275(5 Pt 2):H1567-H1576.
79. Wald M, Gutnisky A, Borda E, Sterin-Borda L. Erythropoietin modified the cardiac action of ouabain in chronically anaemic-uraemic rats. Nephron 1995;71:190-6.
80. Liu H, Zhang HY, Zhu X,Shao Z, Yao Z. Preconditioning blocks cardiocyte apoptosis: role of K(ATP) channels and PKC-epsilon. Am J Physiol 2002;282:H1380-6.
81. Guo D, Nguyen T, Ogbi M, Tawfik H, Ma G, Yu Q, et al. Protein kinase C-epsilon coimmunoprecipitates with cytochrome oxidase subunit IV and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol 2007;293:H2219-30.
82. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD,Mochly-Rosen D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 2008;321(5895):1493-5.
83. Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, et al. Protein kinase C-epsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 2003;92:873-80.
84. Ishida H, Hirota Y, Genka C, Nakzawa H, Nakaya H, Sato T. Opening of mitochondrial K(ATP) channels attenuates the ouabain-induced calcium overload in mitochondria. Circ Res 2001;89:856-8.
85. Light PE, Kanji HD, Fox JE,French RJ. Distinct myoprotective roles of cardiac sarcolemmal and mitochondrial KATP channels during metabolic inhibition and recovery. FASEB J 2001;15:2586-94.
86. Wang L, Cherednichenko G, Hernandez L, Halow J, Camacho SA, Figueredo V, et al. Preconditioning limits mitochondrial Ca(2+) during ischemia in rat hearts: role of K(ATP) channels. Am J Physiol Heart Circ Physiol 2001;280:H2321-8.
87. Ahmad N, Wang Y, Haider KH,Wang B, Pasha Z, Uzun O, et al. Cardiac protection by mitoKATP channels is dependent on Akt translocation from cytosol to mitochondria during late preconditioning. Am J Physiol Heart Circ Physiol 2006;290:H2402-8.
88. Shaik ZP, Fifer EK, Nowak G. Akt activation improves oxidative phosphorylation in renal proximal tubular cells following nephrotoxicant injury. Am J Physiol Renal Physiol 2008;294:F423-32.
89. Kobayashi H, Miura T, Ishida H, Miki T, Tanno M, Yano T, Sato T, et al. Limitation of infarct size by erythropoietin is associated with tran-slocation of Akt to the mitochondria after reperfusion. Clin Exp Pharmacol Physiol 2008;35:812-9.
Science Citation Index Expanded (SciSearch) Created as SCI in 1964, Science Citation Index Expanded now indexes over 9,200 of the world’s most impactful journals across 178 scientific disciplines. More than 53 million records and 1.18 billion cited references date back from 1900 to present.
Journal Citation Reports/Science Edition Journal Citation Reports/Science Edition aims to evaluate a journal’s value from multiple perspectives including the journal impact factor, descriptive data about a journal’s open access content as well as contributing authors, and provide readers a transparent and publisher-neutral data & statistics information about the journal.
Chemical Abstracts Service Source Index The CAS Source Index (CASSI) Search Tool is an online resource that can quickly identify or confirm journal titles and abbreviations for publications indexed by CAS since 1907, including serial and non-serial scientific and technical publications.
Index Copernicus The Index Copernicus International (ICI) Journals database’s is an international indexation database of scientific journals. It covered international scientific journals which divided into general information, contents of individual issues, detailed bibliography (references) sections for every publication, as well as full texts of publications in the form of attached files (optional). For now, there are more than 58,000 scientific journals registered at ICI.
Geneva Foundation for Medical Education and Research The Geneva Foundation for Medical Education and Research (GFMER) is a non-profit organization established in 2002 and it works in close collaboration with the World Health Organization (WHO). The overall objectives of the Foundation are to promote and develop health education and research programs.
Scopus: CiteScore 1.3 (2023) Scopus is Elsevier's abstract and citation database launched in 2004. Scopus covers nearly 36,377 titles (22,794 active titles and 13,583 Inactive titles) from approximately 11,678 publishers, of which 34,346 are peer-reviewed journals in top-level subject fields: life sciences, social sciences, physical sciences and health sciences.
Embase Embase (often styled EMBASE for Excerpta Medica dataBASE), produced by Elsevier, is a biomedical and pharmacological database of published literature designed to support information managers and pharmacovigilance in complying with the regulatory requirements of a licensed drug.
Top